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I

Bugs
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What is a Bug?

A piece of Code . . .
. . . exhibiting behaviour not intended by the developer
. . . not always exhibiting the intended behaviour
. . . which can quickly turn into the above
. . . that is so convoluted that it’s basically the above

5/28



Static Analyses

detect problematic patterns
detect common bugs
enforce code style
never tired, lazy, overworked
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History

Ada (1977-1983)
Lint (1977-1979)
MISRA (1998-now)
Rust (2009-2015)
Clippy (2014-now)
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Why. . .

. . . should you write static analyses?
(instead of leaving it to “the experts”)
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Once upon a
time. . .

. . . in a fairly recent present
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. . . there was

The. BestTM . Programmer.
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Why?

You never hack alone.
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1 Your future self
will have forgotten what you mean

2 Your past self
wrote bad code

3 Your new teammates
need help frequently
with easy issues
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Why? (continued)

Issue → Permanent solution

C → Lint: ~10 years
Ada → SPARK: 6 years
ISO C → MISRA: 8 years
C99 → MISRA: 14 years
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II

Let’s do something
about it
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What do we want?

short time from issue to permanent fix

easy integration
easy development
easy sharing
useful diagnostics
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Easy integration

single setup
automatically run
no usability difference from compiler
errors
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Easy development
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Easy development

share code with compiler
gcc, clang, rustc, ghc, scala, rebar3

tools to analyze the bug
convenience functions
test driven development
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Easy sharing

sharing is caring
updating to new compiler versions
get new analyses
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Useful diagnostics

no false positives
specialized error messages
suggestions
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III

Questions?
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IV

Workshop: Fixing
bugs forever
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Lints are unstable

break around every second week
get fixed fast if part of clippy
require the latest nightly compiler
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Lints share code

clippy’s util module
grouping similarly operating lints
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Boilerplate 1

#![feature(plugin_registrar, box_syntax, rustc_private)]

extern crate syntax;
#[macro_use] extern crate rustc;

use rustc::lint;
use syntax::ast;

25/28



Boilerplate 2

extern crate rustc_plugin;
use rustc_plugin::Registry;

#[plugin_registrar]
fn plugin_registrar(reg: &mut Registry) {

reg.register_early_lint_pass(box Pass);
}

26/28



Boilerplate 3
declare_lint!(TEST_LINT, Warn, "Warn about items named 'lintme'");

struct Pass;

impl lint::LintPass for Pass {
fn get_lints(&self) -> lint::LintArray {

lint_array!(TEST_LINT)
}

}

impl lint::EarlyLintPass for Pass {
fn check_item(&mut self, cx: &lint::EarlyContext, it: &ast::Item) {

if it.ident.name.as_str() == "lintme" {
cx.span_lint(TEST_LINT, it.span, "item is named 'lintme'");

}
}

}
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Quick guide
setup instructions at
https://github.com/Manishearth/rust-clippy/tree/rust_belt_rust

1. open tests/compile-fail/rust_belt_rust.rs

2. write a piece of code you dislike
3. Or have a look at clippy issues labeled E-easy

4. Develop your lint in clippy_lints/src/rust_belt_rust.rs

5. run cargo test

6. Repeat 4. until the tests pass
7. Write your lint info into the list
8. Create a pull request to the clippy repository
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