
INSTITUT FÜR ANGEWANDTE INFORMATIK

How I learned to stop fixing code
. . . over and over again

KIT – Universität des Landes Baden-Württemberg und
nationales Forschungszentrum in der Helmholtz-Gemeinschaft

www.kit.edu

http://www.kit.edu


2/28



KIT

Kernforschungszentrum Karlsruhe
Nuclear Research Center Karlsruhe

3/28



I

Bugs

4/28



What is a Bug?

A piece of Code . . .
. . . exhibiting behaviour not intended by the developer
. . . not always exhibiting the intended behaviour
. . . which can quickly turn into the above
. . . that is so convoluted that it’s basically the above

5/28



Static Analyses

detect problematic patterns
detect common bugs
enforce code style
never tired, lazy, overworked

6/28



History

Ada (1977-1983)
Lint (1977-1979)
MISRA (1998-now)
Rust (2009-2015)
Clippy (2014-now)

7/28



Why. . .

. . . should you write static analyses?
(instead of leaving it to “the experts”)

8/28



Once upon a
time. . .

. . . in a fairly recent present

9/28



. . . there was

The. BestTM . Programmer.

10/28



Why?

You never hack alone.

11/28



1 Your future self
will have forgotten what you mean

2 Your past self
wrote bad code

3 Your new teammates
need help frequently
with easy issues

12/28



Why? (continued)

Issue → Permanent solution

C → Lint: ~10 years
Ada → SPARK: 6 years
ISO C → MISRA: 8 years
C99 → MISRA: 14 years

13/28



Why? (continued)

Issue → Permanent solution

C → Lint: ~10 years
Ada → SPARK: 6 years
ISO C → MISRA: 8 years
C99 → MISRA: 14 years

13/28



II

Let’s do something
about it

14/28



What do we want?

short time from issue to permanent fix

easy integration
easy development
easy sharing
useful diagnostics

15/28



Easy integration

single setup
automatically run
no usability difference from compiler
errors

16/28



Easy development

17/28



Easy development

share code with compiler
gcc, clang, rustc, ghc, scala, rebar3

tools to analyze the bug
convenience functions
test driven development

18/28



Easy sharing

sharing is caring
updating to new compiler versions
get new analyses

19/28



Useful diagnostics

no false positives
specialized error messages
suggestions

20/28



III

Questions?

21/28



IV

Workshop: Fixing
bugs forever

22/28



Lints are unstable

break around every second week
get fixed fast if part of clippy
require the latest nightly compiler

23/28



Lints share code

clippy’s util module
grouping similarly operating lints

24/28



Boilerplate 1

#![feature(plugin_registrar, box_syntax, rustc_private)]

extern crate syntax;
#[macro_use] extern crate rustc;

use rustc::lint;
use syntax::ast;

25/28



Boilerplate 2

extern crate rustc_plugin;
use rustc_plugin::Registry;

#[plugin_registrar]
fn plugin_registrar(reg: &mut Registry) {

reg.register_early_lint_pass(box Pass);
}

26/28



Boilerplate 3
declare_lint!(TEST_LINT, Warn, "Warn about items named 'lintme'");

struct Pass;

impl lint::LintPass for Pass {
fn get_lints(&self) -> lint::LintArray {

lint_array!(TEST_LINT)
}

}

impl lint::EarlyLintPass for Pass {
fn check_item(&mut self, cx: &lint::EarlyContext, it: &ast::Item) {

if it.ident.name.as_str() == "lintme" {
cx.span_lint(TEST_LINT, it.span, "item is named 'lintme'");

}
}

}

27/28



Quick guide
setup instructions at
https://github.com/Manishearth/rust-clippy/tree/rust_belt_rust

1. open tests/compile-fail/rust_belt_rust.rs

2. write a piece of code you dislike
3. Or have a look at clippy issues labeled E-easy

4. Develop your lint in clippy_lints/src/rust_belt_rust.rs

5. run cargo test

6. Repeat 4. until the tests pass
7. Write your lint info into the list
8. Create a pull request to the clippy repository

28/28

https://github.com/Manishearth/rust-clippy/tree/rust_belt_rust

	Bugs
	Let's do something about it
	Questions?
	Workshop: Fixing bugs forever

